
AI-VVO:
Cloud-Based Machine Learning for Volt-VAR Control and Optimization

Meet the team!
Abdul-Salam Adedoja

Ian Kegley
Jacob Gleason
Rene Chavez
Tyler Norris

Client/Advisor: Gelli Ravikumar

Functional Requirements:
● Collecting data streams and publish in the

data pipelines
● Communications - HTTP

○ Establish connection between our
back-end environment and our
front-end environment

● Design and implement of ML/DL algorithm
for VVC and VVO

● Dashboard using client-side scripting to
visualize data, plots, and analytics.

● Test and validate the applications using
available distribution grid simulators

Non-Functional Requirements:
● Function Portability using Docker

Containers
● Web Server/Communication Security
● Algorithm Accuracy & Efficiency
● Dashboard Usability
● Visualization Performance

Project Information:
sdmay21-24@iastate.edu

https://sdmay21-24.sd.ece.iastate.edu

Problem:
Distribution and regulation of energy is an

important issue. Noting this the issue
current devices such as shunt capacitors and

in-line voltage regulators typically manage
voltage and the reactive power of a

distribution grid. These are to put simply,
slow. Researchers began looking for a

solution by exploring machine learning to
assist a new technology (smart inverters for

Volt-VAR Optimization.

Solution:
Our team created a machine learning

algorithm for VVC and VVO for distributed
energy resources integrated distribution grid

to increase voltage stability and reduce
energy losses.

Intended Users
and Uses:

Users:
● Iowa State Lab Students
● Utility Operators

Uses:
Managing and voltage levels and
reactive power throughout
Distributed Energy Resource (DER)
grids. This process allows the
improvement for voltage profiles and
achieve objectives such as, real
power losses and voltage deviation.

Design Approach:
Our approach has three central modules; a back-end built

using Django and PostgreSQL, a core application built using
TensorFlow, and a front-end built using ReactJS

The web server was built using Django and is responsible for
receiving simulation and user data and also sharing data

output from the algorithm with the dashboard

The front-end dashboard was built using ReactJS and
contains three main panels. The home and configuration

panel being the first. Second will be a distribution grid data
panel which will allow the user to interact with the

distribution grid. The last panel is the machine learning
output page.

The core application was built using TensorFlow where the
machine learning algorithm operates. The algorithm

receives data and manages voltage levels to monitor and
ensure our expected output level.

Technical Details:
What we utilized:
● Django
● PostgreSQL
● ReactJS
Languages:
● Python
● Javascript

Testing:
Unit Testing:

Using GridApps-D, OpenDSS and Opal-RT we tested our data in the controlled environments.
Each frameworks allowed us to run simulations and see our expected results. Also needed to test

that our data is being securely saved.

Interface Testing:
The two key interfaces include our back-end database to store data and results. Then we also
have our front-end interface will display our information and show the results. This testing

ensures that they function separately.

Acceptance Testing:
Ensures that each piece is working correctly to meet expectation.

Algorithm Configuration Page

Grid Visualization Page
Simulation Page -

Algorithm Input (middle) and Output (right)

